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Abstract. The aim of this paper is to evaluate recent observational and

theoretical results concerning the physics of chromospheric heating as in-

ferred from IUE, HST-GHRS and ROSAT data. These results are discussed

in conjunction with theoretical model calculations based on acoustic and

magnetic heating to infer some conclusions about the magnetic and non-

magnetic surface structure of cool luminous stars. I find that most types of

stars may exhibit both magnetic and nonmagnetic structures. Candidates

for pure nonmagnetic surface structure include M-type giants and super-

giants. M-type supergiants are also ideal candidates for identifying direct

links between the appearance of hot spots on the stellar surface (perhaps

caused by large convective bubbles) and temporarily increased chromo-

spheric heating and emission.

1. Introduction

An important outstanding problem in stellar astrophysics concerns the

identification of processes responsible for heating stellar chromospheres and

coronae and for driving stellar winds. Major advances during the past 20 yr

have been made, in part due to different types of observations as obtained

by IUE, ROSAT, HST-GHRS, and in part due to sophisticated theoretical

modelling. Based on these results, it has been concluded that two different

types of processes exist: magnetic processes and nonmagnetic processes. In

nonpulsating stars, the nonmagnetic processes largely coincide with acous-
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tic heating. It is now strongly believed that these processes have different

importance in stars of different effective temperature, gravity, and rotation

rate and change dramatically during the course of stellar evolution. On the

other hand, magnetic and nonmagnetic processes are manifestations of dis-

tinct stellar surface structures, which are key in determining the amount of

mechanical energy and momentum input to the atmospheres and winds.

The basic goal of this paper is to summarize key results for late type

stars. I will give four propositions, which are discussed in detail. In partic-

ular, I will consider observational and theoretical results obtained within

tile last two years.

2. Four propositions

The four propositions are:

1. The basal chromospheric emission in main-sequence stars can probably

be attributed to pure acoustic heating. Nonetheless, these stars should

also possess magnetic-field related surface structure, which is probably

required to heat the corona.

2. When solar-type stars evolve up the giant branch, their magnetic fields

decay and the generation of acoustic energy increases drastically. As

a consequence, the heating in single late-type giants and supergiants

above the coronal dividing line is dominated increasingly by nonmag-

netic processes.

3. Most types of stars located above the coronal dividing line should nev-

ertheless have a small magnetic field coverage. In case of noncoronal K

giants with basal chromospheric flux emission, the presence of magnetic

fields can be inferred from the magnitude of chromospheric turbulence

and tile presence of mass loss.

4. Candidates for pure nonmagnetic surface structure include M-type gi-

ants and supergiants. M supergiant stars are also ideal candidates for

identifying direct links between the appearance of hot spots on the

stellar surface (perhaps caused by large convective bubbles) and tem-

porarily increased chromospheric heating and emission.

3. Evaluation of the propositions

3.1. PROPOSITION 1

It is generally presumed that the outer atmospheres of main-sequence stars

are heated both by magnetic and nonmagnetic processes. In case of the Sun,

Rammacher & Uhnschneider (1992) and Carlsson & Stein (1992, 1995) have

shown that the Mg II and Ca II line emission above the intranetwork regions
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can be reproduced successfully by acoustic energy dissipation. Additional

results are given by Rutten (1996, this volume). Magnetic regions can be
heated by magnetic flux-tube waves and other magnetic-field related mech-

anisms (see, e.g., Narain & Ulmschneider 1990).

For main-sequence stars other than the Sun, important observational

results which point to both magnetic and nonmagnetic heating have been

summarized by Schrijver (1987) and Rutten et al. (1991). They presented a
detailed statistical analysis of the flux-flux and flux-color relations derived

from selected emission lines for a large sample of late-type stars. They

found, particularly from their Mg II and Ca II emission line studies, that
the statistical correlations can be understood best when the stellar emission

line fluxes are assumed to consist of two components: a "basal" flux, which

is independent of stellar rotation, and a "magnetic" flux, which depends

upon rotation and age. The basal flux could be identified unequivocally as

an intrinsic property of the stars and is not an artifact of detection limits.

Schrijver (1987) and Rutten et al. (1991) have argued that the basal flux

emission might be attributable to pure acoustic heating.

This proposal has found support by detailed hydrodynamic studies.

Buchholz _z Ulmschneider (1994) and Buchholz (1995) have calculated

acoustic heating models for stars of spectral type F5 V, GO V, G5 V,
K0 V, K5 V, and M0 V. By adopting representative timesteps of the wave

solution, they calculated synthetic Mg IIk and Ca II K line profiles and

Mg II and Ca II emission line fluxes. These line fluxes are then compared

with the empirical basal flux line for Mg II and Ca II given by Rutten et

al. (1991). Buchholz & Ulmschneider found that the agreement between

the computed Mg II and Ca II fluxes and the empirical Mg II and Ca II

basal flux line is remarkably good for all stars considered. This result is
remarkable as the stars considered have spectral types ranging from F5 V

to M0 V implying enormous differences in their atmospheric structure. For

inactive M dwarf stars, the study by Mullan& Cheng (1993) also attributes

chromospheric radiative energy losses to acoustic heating. They found that

their theoretical models are capable of reproducing the observed Mg II -

Ly-_ flux-flux relationship.

On the other hand, there is evidence that also chromospheric basal flux

stars have both magnetic and nonmagnetic surface structures because these

stars show coronal X-ray emission, which is difficult to reconcile with purely

nonmagnetic heating. Rutten et al. (1991), who identified basal flux com-

ponents in the lines of Mg II, Ca II, C II, Si II, C IV, and Si IV, found no

evidence that a basal flux component also exists in soft X-ray emission. This

result is supported by the deduced flux-flux relationships and is consistent

with results from other studies. St_piefi & Ulmschneider (1989) calculated
tile expected X-ray emission from acoustic wave models for F, G, and K



396 MANFRED CUNTZ

main-sequence stars and a limited number of giants by assuming short-

period acoustic shock waves. They found that the calculated and observed

X-ray fluxes differ by two orders of magnitude. Hammer & Ulmschneider

(1991) also assessed the possibility of acoustically heated coronae. They

found that for solar type stars, the resulting coronal base pressures would

to be extremely low, which would make these acoustically heated coronae

unobservable. Other arguments against acoustic heating of stellar coronae

rely on the extremely complex coronal topology inferred from solar obser-

vations, which can directly be linked to magnetic structures and can barely

be reproduced by pure nonmagnetic heating.

On the other hand, evidence is now available that acoustic heating might

indeed contribute (or even dominate?) the coronal emission in stars with an

extremely low level of X-ray activity. Mullan& Cheng (1994a,b) have stud-

ied models for extremely inactive M-type main-sequence stars and mod-

els appropriate to Procyon (F5 IV-V). The heating model for Procyon is

found to explain various spectral features of this star, including the soft

X-ray emission and the observed fluxes in Mg II and H Ly-(_. They also

found that the wave period is an extremely sensitive input parameter and

its value controls whether the observed and computed X-ray fluxes are in

agreement or not. These results clearly contradict other findings which show

the impossibility of acoustic heating models to explain the observed X-ray
emission. Further studies are needed to resolve this issue.

3.2. PROPOSITION 2

When solar-type stars evolve up the giant branch, their angular momentum

decreases, in part due to the increase in the moment of inertia and to mag-

netic braking resulting from the onset of massive stellar winds (Schrijver

1993, biacGregor & Charbonneau 1994, Charbonneau et al. 1996). Char-

bonneau et al. focussed on stars with M/M® = 0.8 and 2.0, which evolve

to and apart from the main-sequence. Significant changes in the moment

of inertia are found to occur as a star evolves leading to strong spin-up

on the pre-main sequence and strong spin-down on the subgiant and giant
branches.

In recent calculations for luminosity class (LC) IV stars, it is found

that stars with M/M® <_ 1.2 remain redward of the rotational dividing

line (which separates stars with and without high rotational velocities as

expressed by v. sin i) through their post-main sequence evolution up to the

giant branch. Therefore, ample time is available for these low mass stars,

while on the main-sequence, to loose angular momentum. More massive

stars (1.2 _< M/M G < 2.0) spend their main-sequence lifetime bheward of

the rotational dividing line. For these stars, the increase in the moment of
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inertia is too small to account for the observed drop in the rotation rates
(Rutten _z Pylyser 1988). This result points to angular momentum loss
due to the onset of massive stellar winds as these stars evolve toward the

red giant branch (Gray &: Nagar 1985; see also Charbonneau et al. 1996).

For more massive stars, similar results have been found by Gray (1989),
Pasquini et al. (1990) and Schrijver & Pols (1993).

Schrijver (1993) summarized key aspects of the stellar angular momen-

tum evolution and discussed relationships to observed properties. He found

that the loss of angular momentum in single stars (or stars showing no

or only marginal interaction with other components) evolving up the red

giant branch comfortably explains various observational results including

the decrease in the surface equatorial rotational velocity (Schrijver &: Pols
1993) and the decrease in Ca II emission (Rutten 1987, Strassmeier et al.

1994). Stars evolving up the giant branch eventually cross the coronal di-

viding line (CDL), first indicated by Linsky _z Haisch (1979). Stars above

the CDL barely show X-ray emission (Maggio et al. 1990, Ayres et al. 1991,

1995) and in most cases provide no evidence for transition layer emission

(Haisch et al. 1990, Ayres et al. 1995). These results clearly indicate a

drastic decline in the surface magnetic field strength due to the stellar evo-

lution. Rosner et al. (1991, 1995), furthermore, argued in favor of changes

in magnetic field topology in stars crossing the CDL, which are found to be

relevant to the outer atmospheric dynamics. An interesting result has also

been found by Hatzes &: Cochran (1993), who presented a tentative deter-

mination of rotational velocities in selected K giants based on the observed
rotational modulation of ]lot surface features. They found rotation periods

of 223 d for a Boo (K1.5 III), 643 d for a Tau (KS III), and 558 d for/3 Gem
(K0 III) compared to _ 25 d for the Sun (G2 V). This result strengthens

the case for the loss of angular momentum in evolving late-type stars.

In addition to the decrease in magnetic field-related activity, another

effect occurs when stars evolve up the giant branch: this is the increased

production of acoustic energy due to higher convective velocities caused by

reduced surface gravity. Renzini et al. (1977) found that the photospheric

acoustic energy flux scales as gjO.7 or g2-1.2, depending on whether H2

molecules are present or not. Bohn (1984) deduced a gravity dependence

of the acoustic energy flux of g,0.5, whereas an improved study by Ulm-

schneider et al. (1996) led to a gravity dependency between g:-0.5 and g2-1.5
depending on stellar structure model.

Judge _ Stencel (1991) have presented a detailed statistical analysis of

the global thermodynamic properties of the outer atmospheres and winds
of late-type giant and supergiant stars with spectral types K, M and C,

considering empirical results for the stellar mass loss rates, the chromo-

spheric radiative energy losses and the terminal flow speed of the winds.
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Concerningthe chromosphericMg II fluxes,they found a rathersmooth
declinewith the effectivetemperatureand, most importantly,a smooth
joining with the Mg II basalflux limit givenby Schrijver (1987),a sus-
pectedindicatorof pure acousticheating(seeabove).This result points
againto the importanceof acousticenergydissipationin starsthat have
evolvedalongthe redgiant branch.

3.3. PROPOSITION3

While acousticenergydissipationcanexplainthe chromosphericemission
lossesin basalflux stars,thereis evidencethat evenchromosphericbasal
flux starssuchasnoncoronalK giantsmighthavealow levelof magnetic
activity remaining,asvariousobservedfeaturescannotbeexplainedoth-
erwise.The evidenceincludesthe presenceof masslossin thesestarsand
the highlevelof atmosphericturbulence.Cuntz (1990)hasshownthat the
masslossratesin inactiveK giantsasinferredfromacousticheatingmodels
aremanyordersof magnitudebelowthe valuesderivedfromobservations
becausemostof the acousticenergyis dissipatedimmediatelybeyondthe
photospheres.This energyis thereforeunavailableto overcomethe gravi-
tational potentialof the star.Preliminaryestimatesof this behaviorhave
alreadybeengivenby Hartmann& MacGregor(1980).Sutmann& Cuntz
(1995)havemeanwhilerediscussedthis issuein the caseof a Boo (K1.5
III). Besidesthe dissipationof short-periodacousticwaves,they alsocon-
sideredthe roleof long periodphotosphericoscillationmodes,whichhave
beenobservedby Belmonteet al. (1990)andothers.Thesemodeshavevery
largeperiods,i.e. closeto or larger than the acousticcut-off period,but
extremelysmallamplitudes(< 100m s-I). As a consequence,the modes
aretrappedand areunimportantfor the atmosphericdynamics.

It hasalsobeenfoundthat acousticheatingmodelsappearto be un-
ableto explainthe magnitudeof observedchromosphericturbulence.Re-
centGHRSdata for c_ Tau (K5 IlI) revealed a high level of chromospheric

turbulence (i.e., __ 24 km s -1) (Carpenter et al. 1991), which appears to
be inconsistent with acoustic wave calculations of Judge & Cuntz (1993)

who calculated 1-D time dependent wave models based on acoustic shock

wave dissipation. They calculated synthetic C II] profiles near 2325 _ and

compared the results with the observations. Judge & Cuntz found that the
turbulent velocities inferred from the theoretical models are _ 5 km s-1

or somewhat less, depending on the model parameters, which is a factor of
5 smaller than observed. In addition, the centroid of the computed emis-

sion profiles were found to be blueshifted by ,-_ 1-2 km s -1, whereas the

observed profiles are redshifted by 3.9 -1- 0.4 km s-1. They concluded that

one (or more) of the model assumptions must be incorrect, suggesting that
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either (i) the chromosphericdynamicsaredominatedby 3-Dor horizontal
flow patternsnot representedby the models, or (ii) that the magnetic field

plays an important role in the chromospheric dynamics. On the other hand,

the models of Judge & Cuntz ignored important thermodynamic effects in

the atmosphere, including noninstantaneous ionization of hydrogen behind

shocks, which may affect their conclusions. Studies are now underway to
overcome this technical restriction.

3.4. PROPOSITION 4

For stars with extremely low gravity, one must describe the generation of
mechanical energy by stellar surface structure in more detail. First, we as-

sume that most, if not all M-type giants and supergiants possess a very
low level of magnetic-field related activity as a consequence of the de-

crease of angular momentum during evolution along the first giant branch

(see Proposition 2). Nonetheless, some small magnetic field coverage may
still exist in these stars, which is potentially relevant for the outer atmo-

spheric dynamics as discussed in the framework of Alfv_n wave driven wind

models (Hartmann &: Avrett 1984, Charbonneau &: MacGregor 1995). Reli-
able magnetic field measurements do, however, not yet exist for these stars

(Marcy _ Bruning 1984, among other literature).

Another important question concerning these stars is the structure of

stellar convection. Based on observational photospheric data which show

significant variabilities, Schwarzschild (1975) suggested that the size scale

of the convective elements in the photospheres of red giants and supergiants

might be extremely large that only a modest number of cells can be present

at any one time on the stellar surface. This result is in sharp contrast to

the case of the Sun (and of similar stars), where the number of granules

simultaneously present on the surface exceeds two million. Subsequent sup-

port for Schwarzschild's suggestion was given by Antia et al. (1984) based
on time-independent stellar convection zone calculations.

Schwarzschild's conjecture has meanwhile gained significant observa-

tional support: Buscher et al. (1990) and Wilson et al. (1992) presented

results from a high-resolution imaging monitoring program for (_ Ori (M2
Iab) using the Nasmyth focus on the William Herschel Telescope (WHT),

which shows the time evolution of a bright surface feature over a period of

nearly two years (i.e. from February 1989 to January 1991). The feature
was identified at four different wavelengths between 546 and 710 nm and

was found to cover at least 10% of the stellar disk. A very significant re-

sult obtained by Toussaint & Reimers (1989) is that the appearance of the

hot spot on _ Ori given by Buscher et al. (1990) coincides with enhanced
Ca II K emission. Toussaint _ Reimers observed a substantial increase in
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Figure I. Ca II flux in a Ori (M2 Iab) on February 1989 (strong solid line) and February

1988 (weak solid line) given by Toussaint & Reimers (1989). This event is possibly caused

by increased acoustic energy production due to a hot surface feature

the chromospheric Ca II K2 emission feature between February 1988 and

February 1989 corresponding to nearly 35% of the total Ca II K flux (Schri-

jver 1995) (see Fig. 1). Note that both dates refer to a similar phase in the

a Ori pulsation cycle, which reduces the possibility that the increased Ca II

emission is caused by photospheric pulsation considerably.

I believe that the following important implications can be inferred from

the previous discussion. First of all, one must accept the idea that a time-

averaged, i.e. globally constant, acoustic energy flux is a meaningless con-

cept in stars which are most evolved. In reality, large convective bubbles

suddenly appear at stellar surface, which lead to the generation of sig-
nificant nonradiative energy on localized horizontal scales. These events

then produce localized episodic chromospheric heating. In this case, one
can make a direct link between atmospheric energy dissipation and the

appearance of convective stellar surface structures.

These results have additional relevance considering observa-

tions presented during the Vienna meeting: Wilson et al. (1996) pre-
sented results from a subsequent study, providing evidence for three spots

on the surface of c_ Ori. Another study of a Ori presented by Kliickers

et al. (1995) uses Speckle imaging observations at the WHT. These re-
sults also provide evidence for an a Ori surface feature occurring on the

nights of January 19 and 20, 1995. Further results were given by Gilliland
g: Dupree (1996, this volume). He presented significant evidence for a spot
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on _ Ori using the Faint Object Camera on HST to obtain images at 2530

.& (continuum) and 2780 _ (Mg II emission). These and subsequent results

should lead to a better understanding of relationships better stellar surface

structure and chromospheric heating and activity.

4. Conclusions

It has been the aim of this paper to discuss critically the presence of mag-

netic and nonmagnetic surface structure in late-type stars by evaluating

results on chromospheric heating. It is likely that most types of stars have

both magnetic and nonmagnetic regions present which are important for

explaining the strength of the chromospheric emission, the atmospheric

turbulence and the stellar mass loss behavior. Measurements of the surface

magnetic field strength are still difficult, if not impossible, for these stars

as discussed by Marcy & Bruning (1984), among others. Candidates for

pure nonmagnetic surface structure include M-type giants and supergiants.

M supergiant stars are also ideal candidates for identifying direct links be-

tween the appearance of hot spots on the stellar surface (perhaps caused by

large convective bubbles) and temporarily increased chromospheric heating
and emission.
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